Cartan-Decomposition Subgroups of SU(2,n)
Journal of Lie theory, Tome 11 (2001) no. 2, pp. 505-543
We give explicit, practical conditions that determine whether or not a closed, connected subgroup H of G = SU(2, n) has the property that there exists a compact subset C of G with CHC = G. For this purpose we fix a Cartan decomposition G = K A+ K of G, and then carry out an approximate calculation of the intersection of (KHK) and A+ for each closed, connected subgroup H of G. This generalizes the work of H. Oh and D. Witte for G = SO(2, n).
@article{JLT_2001_11_2_JLT_2001_11_2_a13,
author = {A. Iozzi and D. Witte},
title = {Cartan-Decomposition {Subgroups} of {SU(2,n)}},
journal = {Journal of Lie theory},
pages = {505--543},
year = {2001},
volume = {11},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a13/}
}
A. Iozzi; D. Witte. Cartan-Decomposition Subgroups of SU(2,n). Journal of Lie theory, Tome 11 (2001) no. 2, pp. 505-543. http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a13/