Cartan-Decomposition Subgroups of SU(2,n)
Journal of Lie theory, Tome 11 (2001) no. 2, pp. 505-543.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give explicit, practical conditions that determine whether or not a closed, connected subgroup H of G = SU(2, n) has the property that there exists a compact subset C of G with CHC = G. For this purpose we fix a Cartan decomposition G = K A+ K of G, and then carry out an approximate calculation of the intersection of (KHK) and A+ for each closed, connected subgroup H of G. This generalizes the work of H. Oh and D. Witte for G = SO(2, n).
@article{JLT_2001_11_2_JLT_2001_11_2_a13,
     author = {A. Iozzi and D. Witte },
     title = {Cartan-Decomposition {Subgroups} of {SU(2,n)}},
     journal = {Journal of Lie theory},
     pages = {505--543},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a13/}
}
TY  - JOUR
AU  - A. Iozzi
AU  - D. Witte 
TI  - Cartan-Decomposition Subgroups of SU(2,n)
JO  - Journal of Lie theory
PY  - 2001
SP  - 505
EP  - 543
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a13/
ID  - JLT_2001_11_2_JLT_2001_11_2_a13
ER  - 
%0 Journal Article
%A A. Iozzi
%A D. Witte 
%T Cartan-Decomposition Subgroups of SU(2,n)
%J Journal of Lie theory
%D 2001
%P 505-543
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a13/
%F JLT_2001_11_2_JLT_2001_11_2_a13
A. Iozzi; D. Witte . Cartan-Decomposition Subgroups of SU(2,n). Journal of Lie theory, Tome 11 (2001) no. 2, pp. 505-543. http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a13/