Some Examples of Discrete Groups and Hyperbolic Orbifolds of Infinite Volume
Journal of Lie theory, Tome 11 (2001) no. 2, pp. 491-503
Voir la notice de l'article provenant de la source Heldermann Verlag
We study the class of two-generator subgroups of PSL(2, C) with real parameters which was introduced recently by Gehring, Gilman, and Martin. We give criteria for discreteness of non-elementary and non-Fuchsian groups of this class that are generated by two hyperbolic elements. We construct all hyperbolic orbifolds uniformized by the discrete groups of such type. The orbifolds described are of infinite volume.
@article{JLT_2001_11_2_JLT_2001_11_2_a12,
author = {E. Klimenko },
title = {Some {Examples} of {Discrete} {Groups} and {Hyperbolic} {Orbifolds} of {Infinite} {Volume}},
journal = {Journal of Lie theory},
pages = {491--503},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a12/}
}
TY - JOUR AU - E. Klimenko TI - Some Examples of Discrete Groups and Hyperbolic Orbifolds of Infinite Volume JO - Journal of Lie theory PY - 2001 SP - 491 EP - 503 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a12/ ID - JLT_2001_11_2_JLT_2001_11_2_a12 ER -
E. Klimenko . Some Examples of Discrete Groups and Hyperbolic Orbifolds of Infinite Volume. Journal of Lie theory, Tome 11 (2001) no. 2, pp. 491-503. http://geodesic.mathdoc.fr/item/JLT_2001_11_2_JLT_2001_11_2_a12/