Moment Sets and the Unitary Dual of a Nilpotent Lie Group
Journal of Lie theory, Tome 11 (2001) no. 1, pp. 135-154.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let G be a connected and simply connected nilpotent Lie group with Lie algebra L(G) and unitary dual D(G). The moment map for π of D(G) sends smooth vectors in the representation space of π to L(G)*. The closure of the image of the moment map for π is called its moment set. N. Wildberger has proved that the moment set for π coincides with the closure of the convex hull of the corresponding coadjoint orbit. We say that D(G) is moment separable when the moment sets differ for any pair of distinct irreducible unitary representations. Our main results provide sufficient and necessary conditions for moment separability in a restricted class of nilpotent groups.
@article{JLT_2001_11_1_JLT_2001_11_1_a7,
     author = {A. Baklouti and C. Benson and G. Ratcliff },
     title = {Moment {Sets} and the {Unitary} {Dual} of a {Nilpotent} {Lie} {Group}},
     journal = {Journal of Lie theory},
     pages = {135--154},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a7/}
}
TY  - JOUR
AU  - A. Baklouti
AU  - C. Benson
AU  - G. Ratcliff 
TI  - Moment Sets and the Unitary Dual of a Nilpotent Lie Group
JO  - Journal of Lie theory
PY  - 2001
SP  - 135
EP  - 154
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a7/
ID  - JLT_2001_11_1_JLT_2001_11_1_a7
ER  - 
%0 Journal Article
%A A. Baklouti
%A C. Benson
%A G. Ratcliff 
%T Moment Sets and the Unitary Dual of a Nilpotent Lie Group
%J Journal of Lie theory
%D 2001
%P 135-154
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a7/
%F JLT_2001_11_1_JLT_2001_11_1_a7
A. Baklouti; C. Benson; G. Ratcliff . Moment Sets and the Unitary Dual of a Nilpotent Lie Group. Journal of Lie theory, Tome 11 (2001) no. 1, pp. 135-154. http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a7/