On the Structure of Transitively Differential Algebras
Journal of Lie theory, Tome 11 (2001) no. 1, pp. 111-128
Voir la notice de l'article provenant de la source Heldermann Verlag
We study finite-dimensional Lie algebras of polynomial vector fields in n variables that contain all partial derivatives and the Euler operator. We derive some general results on the structure of such Lie algebras, and provide the complete classification in the cases n=2 and n=3. Finally we describe a certain construction in high dimensions.
@article{JLT_2001_11_1_JLT_2001_11_1_a5,
author = {G. Post },
title = {On the {Structure} of {Transitively} {Differential} {Algebras}},
journal = {Journal of Lie theory},
pages = {111--128},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a5/}
}
G. Post . On the Structure of Transitively Differential Algebras. Journal of Lie theory, Tome 11 (2001) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a5/