On the Structure of Transitively Differential Algebras
Journal of Lie theory, Tome 11 (2001) no. 1, pp. 111-128.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study finite-dimensional Lie algebras of polynomial vector fields in n variables that contain all partial derivatives and the Euler operator. We derive some general results on the structure of such Lie algebras, and provide the complete classification in the cases n=2 and n=3. Finally we describe a certain construction in high dimensions.
@article{JLT_2001_11_1_JLT_2001_11_1_a5,
     author = {G. Post },
     title = {On the {Structure} of {Transitively} {Differential} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {111--128},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a5/}
}
TY  - JOUR
AU  - G. Post 
TI  - On the Structure of Transitively Differential Algebras
JO  - Journal of Lie theory
PY  - 2001
SP  - 111
EP  - 128
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a5/
ID  - JLT_2001_11_1_JLT_2001_11_1_a5
ER  - 
%0 Journal Article
%A G. Post 
%T On the Structure of Transitively Differential Algebras
%J Journal of Lie theory
%D 2001
%P 111-128
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a5/
%F JLT_2001_11_1_JLT_2001_11_1_a5
G. Post . On the Structure of Transitively Differential Algebras. Journal of Lie theory, Tome 11 (2001) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a5/