On Some Degenerate Principal Series Representations of O(p,2)
Journal of Lie theory, Tome 11 (2001) no. 1, pp. 23-55.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider representations of O(p, 2)  (p>4)  induced from one-dimensional representations of a maximal parabolic subgroup. We first decompose them into K-types using Stiefel harmonics theory, then write down the actions of the noncompact part. Now the reducibility and the unitarizability of the irreducible constituents are deduced.
@article{JLT_2001_11_1_JLT_2001_11_1_a2,
     author = {T. Fujimura },
     title = {On {Some} {Degenerate} {Principal} {Series} {Representations} of {O(p,2)}},
     journal = {Journal of Lie theory},
     pages = {23--55},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a2/}
}
TY  - JOUR
AU  - T. Fujimura 
TI  - On Some Degenerate Principal Series Representations of O(p,2)
JO  - Journal of Lie theory
PY  - 2001
SP  - 23
EP  - 55
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a2/
ID  - JLT_2001_11_1_JLT_2001_11_1_a2
ER  - 
%0 Journal Article
%A T. Fujimura 
%T On Some Degenerate Principal Series Representations of O(p,2)
%J Journal of Lie theory
%D 2001
%P 23-55
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a2/
%F JLT_2001_11_1_JLT_2001_11_1_a2
T. Fujimura . On Some Degenerate Principal Series Representations of O(p,2). Journal of Lie theory, Tome 11 (2001) no. 1, pp. 23-55. http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a2/