On Representations of SLn with Algebras of Invariants being Complete Intersections
Journal of Lie theory, Tome 11 (2001) no. 1, pp. 207-229
Cet article a éte moissonné depuis la source Heldermann Verlag
We obtain the complete list of representations of SLn such that the algebra of invariants is a hypersurface. We also give a list containing all the representations of SLn such that the algebra of invariants is a complete intersection.
@article{JLT_2001_11_1_JLT_2001_11_1_a11,
author = {D. A. Shmel'kin },
title = {On {Representations} of {SL\protect\textsubscript{n}} with {Algebras} of {Invariants} being {Complete} {Intersections}},
journal = {Journal of Lie theory},
pages = {207--229},
year = {2001},
volume = {11},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a11/}
}
TY - JOUR AU - D. A. Shmel'kin TI - On Representations of SLn with Algebras of Invariants being Complete Intersections JO - Journal of Lie theory PY - 2001 SP - 207 EP - 229 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a11/ ID - JLT_2001_11_1_JLT_2001_11_1_a11 ER -
D. A. Shmel'kin . On Representations of SLn with Algebras of Invariants being Complete Intersections. Journal of Lie theory, Tome 11 (2001) no. 1, pp. 207-229. http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a11/