On Penney's Cayley Transform of a Homogeneous Siegel Domain
Journal of Lie theory, Tome 11 (2001) no. 1, pp. 185-206
Cet article a éte moissonné depuis la source Heldermann Verlag
We introduce a Cayley transform C of a homogeneous Siegel domain D as a slight modification of Penney's one. We give an explicit formula to the inverse map of C, and thus clarify the biholomorphic nature of C in a direct and visible manner. When D is quasisymmetric, our Cayley transform C is shown to be naturally coincident with Dorfmeister's one. A phenomenon which does not appear in the case of quasisymmetric domains is presented by an example in the last section.
@article{JLT_2001_11_1_JLT_2001_11_1_a10,
author = {T. Nomura },
title = {On {Penney's} {Cayley} {Transform} of a {Homogeneous} {Siegel} {Domain}},
journal = {Journal of Lie theory},
pages = {185--206},
year = {2001},
volume = {11},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a10/}
}
T. Nomura . On Penney's Cayley Transform of a Homogeneous Siegel Domain. Journal of Lie theory, Tome 11 (2001) no. 1, pp. 185-206. http://geodesic.mathdoc.fr/item/JLT_2001_11_1_JLT_2001_11_1_a10/