The $r$th moment of the divisor function: an elementary approach
Journal of integer sequences, Tome 20 (2017) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For integer $r \ge 1$ we give an elementary proof for the main term of the asymptotic behavior of the $r$th moment of the number of divisors of $n$ for positive integers $n \le x$.
Classification : 11A35, 11N37
Keywords: number of divisors, Möbius inversion
@article{JIS_2017__20_7_a5,
     author = {Luca, Florian and T\'oth, L\'aszl\'o},
     title = {The $r$th moment of the divisor function: an elementary approach},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_7_a5/}
}
TY  - JOUR
AU  - Luca, Florian
AU  - Tóth, László
TI  - The $r$th moment of the divisor function: an elementary approach
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_7_a5/
LA  - en
ID  - JIS_2017__20_7_a5
ER  - 
%0 Journal Article
%A Luca, Florian
%A Tóth, László
%T The $r$th moment of the divisor function: an elementary approach
%J Journal of integer sequences
%D 2017
%V 20
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_7_a5/
%G en
%F JIS_2017__20_7_a5
Luca, Florian; Tóth, László. The $r$th moment of the divisor function: an elementary approach. Journal of integer sequences, Tome 20 (2017) no. 7. http://geodesic.mathdoc.fr/item/JIS_2017__20_7_a5/