Extending a recent result on hyper $m$-ary partition sequences
Journal of integer sequences, Tome 20 (2017) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A hyper $m$-ary partition of an integer $n$ is defined to be a partition of $n$ where each part is a power of $m$ and each distinct power of $m$ occurs at most $m$ times. Let $h_{m}(n)$ denote the number of hyper $m$-ary partitions of $n$ and consider the resulting sequence. We show that the hyper $m_{1}$-ary partition sequence is a subsequence of the hyper $m_{2}$-ary partition sequence, for $2 \le m_{1} \le m_{2}$.
Classification : 05A17
Keywords: integer partition, hyper m-ary partition
@article{JIS_2017__20_6_a7,
     author = {Flowers, Timothy B. and Lockard, Shannon R.},
     title = {Extending a recent result on hyper $m$-ary partition sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a7/}
}
TY  - JOUR
AU  - Flowers, Timothy B.
AU  - Lockard, Shannon R.
TI  - Extending a recent result on hyper $m$-ary partition sequences
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a7/
LA  - en
ID  - JIS_2017__20_6_a7
ER  - 
%0 Journal Article
%A Flowers, Timothy B.
%A Lockard, Shannon R.
%T Extending a recent result on hyper $m$-ary partition sequences
%J Journal of integer sequences
%D 2017
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a7/
%G en
%F JIS_2017__20_6_a7
Flowers, Timothy B.; Lockard, Shannon R. Extending a recent result on hyper $m$-ary partition sequences. Journal of integer sequences, Tome 20 (2017) no. 6. http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a7/