Width-$k$ generalizations of classical permutation statistics
Journal of integer sequences, Tome 20 (2017) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce new natural generalizations of the classical descent and inversion statistics for permutations, called $width-k$ descents and $width-k$ inversions. These variations induce generalizations of the excedance and major statistics, providing a framework in which well-known equidistributivity results for classical statistics are paralleled. We explore additional relationships among the statistics providing specific formulas in certain special cases. Moreover, we explore the behavior of these width-$k$ statistics in the context of pattern avoidance.
Classification : 05A05, 05A15
Keywords: permutation statistics, pattern avoidance, generating function
@article{JIS_2017__20_6_a2,
     author = {Davis, Robert},
     title = {Width-$k$ generalizations of classical permutation statistics},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a2/}
}
TY  - JOUR
AU  - Davis, Robert
TI  - Width-$k$ generalizations of classical permutation statistics
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a2/
LA  - en
ID  - JIS_2017__20_6_a2
ER  - 
%0 Journal Article
%A Davis, Robert
%T Width-$k$ generalizations of classical permutation statistics
%J Journal of integer sequences
%D 2017
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a2/
%G en
%F JIS_2017__20_6_a2
Davis, Robert. Width-$k$ generalizations of classical permutation statistics. Journal of integer sequences, Tome 20 (2017) no. 6. http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a2/