Explicit bounds for the sum of reciprocals of pseudoprimes and Carmichael numbers
Journal of integer sequences, Tome 20 (2017) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: From a 1956 paper of Erdős, we know that the base-two pseudoprimes and the Carmichael numbers both have a convergent sum of reciprocals. We prove that the values of these sums are less than 33 and 28, respectively.
Classification : 11N25, 11Y99
Keywords: Carmichael number, pseudoprime, reciprocal sum, smooth number
@article{JIS_2017__20_6_a1,
     author = {Bayless, Jonathan and Kinlaw, Paul},
     title = {Explicit bounds for the sum of reciprocals of pseudoprimes and {Carmichael} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a1/}
}
TY  - JOUR
AU  - Bayless, Jonathan
AU  - Kinlaw, Paul
TI  - Explicit bounds for the sum of reciprocals of pseudoprimes and Carmichael numbers
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a1/
LA  - en
ID  - JIS_2017__20_6_a1
ER  - 
%0 Journal Article
%A Bayless, Jonathan
%A Kinlaw, Paul
%T Explicit bounds for the sum of reciprocals of pseudoprimes and Carmichael numbers
%J Journal of integer sequences
%D 2017
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a1/
%G en
%F JIS_2017__20_6_a1
Bayless, Jonathan; Kinlaw, Paul. Explicit bounds for the sum of reciprocals of pseudoprimes and Carmichael numbers. Journal of integer sequences, Tome 20 (2017) no. 6. http://geodesic.mathdoc.fr/item/JIS_2017__20_6_a1/