A restricted growth word approach to partitions with odd/even size blocks
Journal of integer sequences, Tome 20 (2017) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We use restricted growth words and multivariate generating functionology to obtain the ordinary generating function for the number of partitions of an $n$-set into $k$ blocks of odd (respectively, even) cardinality.
Classification : 05A18, 05A15
Keywords: set partition, restricted growth word, multivariate generating function
@article{JIS_2017__20_5_a2,
     author = {Ehrenborg, Richard and Hedmark, Dustin and Hettle, Cyrus},
     title = {A restricted growth word approach to partitions with odd/even size blocks},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_5_a2/}
}
TY  - JOUR
AU  - Ehrenborg, Richard
AU  - Hedmark, Dustin
AU  - Hettle, Cyrus
TI  - A restricted growth word approach to partitions with odd/even size blocks
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_5_a2/
LA  - en
ID  - JIS_2017__20_5_a2
ER  - 
%0 Journal Article
%A Ehrenborg, Richard
%A Hedmark, Dustin
%A Hettle, Cyrus
%T A restricted growth word approach to partitions with odd/even size blocks
%J Journal of integer sequences
%D 2017
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_5_a2/
%G en
%F JIS_2017__20_5_a2
Ehrenborg, Richard; Hedmark, Dustin; Hettle, Cyrus. A restricted growth word approach to partitions with odd/even size blocks. Journal of integer sequences, Tome 20 (2017) no. 5. http://geodesic.mathdoc.fr/item/JIS_2017__20_5_a2/