On functions expressible as words on a pair of Beatty sequences
Journal of integer sequences, Tome 20 (2017) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $a(n)=\lfloor n{\alpha}\rfloor$ and $b(n)=\lfloor n{\alpha}^2\rfloor$, where ${\alpha}=\frac{1+\sqrt{5}}2$. Then a theorem of Carlitz et al. states that each function $f$, composed of several $a$'s and $b$'s, can be expressed in the form $c_{1}a + c_{2}b - c_{3}$, where $c_{1}$ and $c_{2}$ are consecutive Fibonacci numbers determined by the numbers of $a$'s and of $b$'s composing $f$ and $c_{3}$ is a nonnegative constant. We provide generalizations of this theorem to two infinite families of complementary pairs of Beatty sequences. The particular case involving `Narayana' numbers is examined in depth. The details reveal that $x_n= \lfloor{\alpha}^3\lfloor{\alpha}^3\lfloor\cdots\lfloor{\alpha}^3\rfloor\cdots\rfloor\rfloor\rfloor$, with $n$ nested pairs of $\lfloor\;\rfloor$, is a 7th-order linear recurrence, where ${\alpha}$ is the dominant zero of $x^{3} - x^{2} - 1$.
Classification : 11B83, 11B37, 11B39
Keywords: Beatty sequence, Wythoff pair, integer part, linear recurrence
@article{JIS_2017__20_4_a5,
     author = {Ballot, Christian},
     title = {On functions expressible as words on a pair of {Beatty} sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_4_a5/}
}
TY  - JOUR
AU  - Ballot, Christian
TI  - On functions expressible as words on a pair of Beatty sequences
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_4_a5/
LA  - en
ID  - JIS_2017__20_4_a5
ER  - 
%0 Journal Article
%A Ballot, Christian
%T On functions expressible as words on a pair of Beatty sequences
%J Journal of integer sequences
%D 2017
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_4_a5/
%G en
%F JIS_2017__20_4_a5
Ballot, Christian. On functions expressible as words on a pair of Beatty sequences. Journal of integer sequences, Tome 20 (2017) no. 4. http://geodesic.mathdoc.fr/item/JIS_2017__20_4_a5/