The constant of recognizability is computable for primitive morphisms
Journal of integer sequences, Tome 20 (2017) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Mossé proved that primitive morphisms are recognizable. In this paper we give a computable upper bound for the constant of recognizability of such a morphism. This bound can be expressed using only the cardinality of the alphabet and the length of the longest image of a letter under the morphism.
Classification : 68R15, 68Q01
Keywords: combinatorics on words, substitution, recognizability, circularity
@article{JIS_2017__20_4_a0,
     author = {Durand, Fabien and Leroy, Julien},
     title = {The constant of recognizability is computable for primitive morphisms},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_4_a0/}
}
TY  - JOUR
AU  - Durand, Fabien
AU  - Leroy, Julien
TI  - The constant of recognizability is computable for primitive morphisms
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_4_a0/
LA  - en
ID  - JIS_2017__20_4_a0
ER  - 
%0 Journal Article
%A Durand, Fabien
%A Leroy, Julien
%T The constant of recognizability is computable for primitive morphisms
%J Journal of integer sequences
%D 2017
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_4_a0/
%G en
%F JIS_2017__20_4_a0
Durand, Fabien; Leroy, Julien. The constant of recognizability is computable for primitive morphisms. Journal of integer sequences, Tome 20 (2017) no. 4. http://geodesic.mathdoc.fr/item/JIS_2017__20_4_a0/