Arithmetic progressions on conics
Journal of integer sequences, Tome 20 (2017) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose $x$-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We also provide infinite families of 3-term progressions on the unit hyperbola, as well as conics $ax^{2} + cy^{2} = 1$ containing arithmetic progressions as long as 8 terms.
Classification : 11B25, 11D09
Keywords: arithemetic progression, conic
@article{JIS_2017__20_2_a6,
     author = {Ciss, Abdoul Aziz and Moody, Dustin},
     title = {Arithmetic progressions on conics},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a6/}
}
TY  - JOUR
AU  - Ciss, Abdoul Aziz
AU  - Moody, Dustin
TI  - Arithmetic progressions on conics
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a6/
LA  - en
ID  - JIS_2017__20_2_a6
ER  - 
%0 Journal Article
%A Ciss, Abdoul Aziz
%A Moody, Dustin
%T Arithmetic progressions on conics
%J Journal of integer sequences
%D 2017
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a6/
%G en
%F JIS_2017__20_2_a6
Ciss, Abdoul Aziz; Moody, Dustin. Arithmetic progressions on conics. Journal of integer sequences, Tome 20 (2017) no. 2. http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a6/