On the exponents of non-trivial divisors of odd numbers and a generalization of Proth's primality theorem
Journal of integer sequences, Tome 20 (2017) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We present a family of integer sequences characterizing the behavior of the quotients $\sigma /s$ for a given odd natural number $H$, where $N = H ; 2^{\sigma } + 1$ is a composite number and $h ; 2^{s} + 1 (h \ge 1$ odd, $s, \sigma \in $ N) is a non-trivial divisor of $N$. As an application we prove a generalization of the primality theorem of Proth.
Classification : 11A41, 11A51, 11B83, 11D61, 11D72, 11Y11
Keywords: exponent, non-trivial divisor, composite number, primality test, prime number, Diophantine equation, generalized Fermat number, Fermat period
@article{JIS_2017__20_2_a5,
     author = {M\"uller, Tom},
     title = {On the exponents of non-trivial divisors of odd numbers and a generalization of {Proth's} primality theorem},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a5/}
}
TY  - JOUR
AU  - Müller, Tom
TI  - On the exponents of non-trivial divisors of odd numbers and a generalization of Proth's primality theorem
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a5/
LA  - en
ID  - JIS_2017__20_2_a5
ER  - 
%0 Journal Article
%A Müller, Tom
%T On the exponents of non-trivial divisors of odd numbers and a generalization of Proth's primality theorem
%J Journal of integer sequences
%D 2017
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a5/
%G en
%F JIS_2017__20_2_a5
Müller, Tom. On the exponents of non-trivial divisors of odd numbers and a generalization of Proth's primality theorem. Journal of integer sequences, Tome 20 (2017) no. 2. http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a5/