On the maximum number of non-intersecting diagonals in an array
Journal of integer sequences, Tome 20 (2017) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We investigate the total number of diagonals that can be placed in the unit squares of a given grid in such a way that no two diagonals have a common point. We develop theoretical and computational results for square and rectangular shaped grids, and extend the problem to three-dimensional arrays. We pose some open questions for further investigation.
Classification : 05A05, 05A15, 05B45
Keywords: diagonal placement, maximum independent set, constrained optimization
@article{JIS_2017__20_2_a2,
     author = {Boyland, Peter and Pint\'er, Gabriella and Lauk\'o, Istv\'an and Roth, Ivan and Schoenfield, Jon E. and Wasielewski, Stephen},
     title = {On the maximum number of non-intersecting diagonals in an array},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a2/}
}
TY  - JOUR
AU  - Boyland, Peter
AU  - Pintér, Gabriella
AU  - Laukó, István
AU  - Roth, Ivan
AU  - Schoenfield, Jon E.
AU  - Wasielewski, Stephen
TI  - On the maximum number of non-intersecting diagonals in an array
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a2/
LA  - en
ID  - JIS_2017__20_2_a2
ER  - 
%0 Journal Article
%A Boyland, Peter
%A Pintér, Gabriella
%A Laukó, István
%A Roth, Ivan
%A Schoenfield, Jon E.
%A Wasielewski, Stephen
%T On the maximum number of non-intersecting diagonals in an array
%J Journal of integer sequences
%D 2017
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a2/
%G en
%F JIS_2017__20_2_a2
Boyland, Peter; Pintér, Gabriella; Laukó, István; Roth, Ivan; Schoenfield, Jon E.; Wasielewski, Stephen. On the maximum number of non-intersecting diagonals in an array. Journal of integer sequences, Tome 20 (2017) no. 2. http://geodesic.mathdoc.fr/item/JIS_2017__20_2_a2/