Fibonacci and Lucas sedenions
Journal of integer sequences, Tome 20 (2017) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The sedenions form a 16-dimensional non-associative and non-commutative algebra over the set of real numbers. In this paper, we introduce the Fibonacci and Lucas sedenions. We present generating functions and Binet formulas for the Fibonacci and Lucas sedenions, and derive adaptations for some well-known identities of Fibonacci and Lucas numbers.
Classification : 11B39, 20N05, 17A45
Keywords: sedenion, Fibonacci sedenion, Lucas sedenion
@article{JIS_2017__20_1_a3,
     author = {Bilgici, G\"oksal and Toke\c{s}er, \"Umit and \"Unal, Zafer},
     title = {Fibonacci and {Lucas} sedenions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2017__20_1_a3/}
}
TY  - JOUR
AU  - Bilgici, Göksal
AU  - Tokeşer, Ümit
AU  - Ünal, Zafer
TI  - Fibonacci and Lucas sedenions
JO  - Journal of integer sequences
PY  - 2017
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2017__20_1_a3/
LA  - en
ID  - JIS_2017__20_1_a3
ER  - 
%0 Journal Article
%A Bilgici, Göksal
%A Tokeşer, Ümit
%A Ünal, Zafer
%T Fibonacci and Lucas sedenions
%J Journal of integer sequences
%D 2017
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2017__20_1_a3/
%G en
%F JIS_2017__20_1_a3
Bilgici, Göksal; Tokeşer, Ümit; Ünal, Zafer. Fibonacci and Lucas sedenions. Journal of integer sequences, Tome 20 (2017) no. 1. http://geodesic.mathdoc.fr/item/JIS_2017__20_1_a3/