Mode and Edgeworth expansion for the Ewens distribution and the Stirling numbers
Journal of integer sequences, Tome 19 (2016) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We provide asymptotic expansions for the Stirling numbers of the first kind and, more generally, the Ewens (or Karamata-Stirling) distribution. Based on these expansions, we obtain some new results on the asymptotic properties of the mode and the maximum of the Stirling numbers and the Ewens distribution. For arbitrary $\theta0$ and for all sufficiently large $n\in\mathbb{N} $, the unique maximum of the Ewens probability mass function
@article{JIS_2016__19_8_a4,
     author = {Kabluchko, Zakhar and Marynych, Alexander and Sulzbach, Henning},
     title = {Mode and {Edgeworth} expansion for the {Ewens} distribution and the {Stirling} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {8},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_8_a4/}
}
TY  - JOUR
AU  - Kabluchko, Zakhar
AU  - Marynych, Alexander
AU  - Sulzbach, Henning
TI  - Mode and Edgeworth expansion for the Ewens distribution and the Stirling numbers
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_8_a4/
LA  - en
ID  - JIS_2016__19_8_a4
ER  - 
%0 Journal Article
%A Kabluchko, Zakhar
%A Marynych, Alexander
%A Sulzbach, Henning
%T Mode and Edgeworth expansion for the Ewens distribution and the Stirling numbers
%J Journal of integer sequences
%D 2016
%V 19
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_8_a4/
%G en
%F JIS_2016__19_8_a4
Kabluchko, Zakhar; Marynych, Alexander; Sulzbach, Henning. Mode and Edgeworth expansion for the Ewens distribution and the Stirling numbers. Journal of integer sequences, Tome 19 (2016) no. 8. http://geodesic.mathdoc.fr/item/JIS_2016__19_8_a4/