Binomial coefficients and enumeration of restricted words
Journal of integer sequences, Tome 19 (2016) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We derive partial solutions for a recently-posed problem of the enumeration of restricted words. We obtain several explicit formulas in which the number of restricted words is expressed in terms of the binomial coefficients. These results establish relations between the partial Bell polynomials and the binomial coefficients. In particular, we link the $r$-step Fibonacci numbers, the binomial coefficients, and the partitions of a positive integer into at most $r$ parts. Also, we prove that several well-known classes of integers can be interpreted in terms of compositions. We finish the paper with an extension of a recent result about Euler-type identities for integer compositions.
Classification : 05A10, 11B39
Keywords: binary word, integer composition, restricted word, enumeration
@article{JIS_2016__19_7_a2,
     author = {Janji\'c, Milan},
     title = {Binomial coefficients and enumeration of restricted words},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {7},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_7_a2/}
}
TY  - JOUR
AU  - Janjić, Milan
TI  - Binomial coefficients and enumeration of restricted words
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_7_a2/
LA  - en
ID  - JIS_2016__19_7_a2
ER  - 
%0 Journal Article
%A Janjić, Milan
%T Binomial coefficients and enumeration of restricted words
%J Journal of integer sequences
%D 2016
%V 19
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_7_a2/
%G en
%F JIS_2016__19_7_a2
Janjić, Milan. Binomial coefficients and enumeration of restricted words. Journal of integer sequences, Tome 19 (2016) no. 7. http://geodesic.mathdoc.fr/item/JIS_2016__19_7_a2/