A variant of the Euclid-Mullin sequence containing every prime
Journal of integer sequences, Tome 19 (2016) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a generalization of Euclid's proof of the infinitude of primes and show that it leads to variants of the Euclid-Mullin sequence that provably contain every prime number.
Classification : 11A41, 11B83
Keywords: prime number, euclid-Mullin sequence
@article{JIS_2016__19_6_a7,
     author = {Booker, Andrew R.},
     title = {A variant of the {Euclid-Mullin} sequence containing every prime},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a7/}
}
TY  - JOUR
AU  - Booker, Andrew R.
TI  - A variant of the Euclid-Mullin sequence containing every prime
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a7/
LA  - en
ID  - JIS_2016__19_6_a7
ER  - 
%0 Journal Article
%A Booker, Andrew R.
%T A variant of the Euclid-Mullin sequence containing every prime
%J Journal of integer sequences
%D 2016
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a7/
%G en
%F JIS_2016__19_6_a7
Booker, Andrew R. A variant of the Euclid-Mullin sequence containing every prime. Journal of integer sequences, Tome 19 (2016) no. 6. http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a7/