A proof of a famous identity concerning the convolution of the central binomial coefficients
Journal of integer sequences, Tome 19 (2016) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give an elementary proof of a famous binomial identity by using recurrence relations and telescoping. We also prove the alternating version of that identity and one of its generalizations.
Keywords: central binomial coefficient, recurrence equation, telescoping, auxiliary sum
@article{JIS_2016__19_6_a6,
     author = {Miki\'c, Jovan},
     title = {A proof of a famous identity concerning the convolution of the central binomial coefficients},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a6/}
}
TY  - JOUR
AU  - Mikić, Jovan
TI  - A proof of a famous identity concerning the convolution of the central binomial coefficients
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a6/
LA  - en
ID  - JIS_2016__19_6_a6
ER  - 
%0 Journal Article
%A Mikić, Jovan
%T A proof of a famous identity concerning the convolution of the central binomial coefficients
%J Journal of integer sequences
%D 2016
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a6/
%G en
%F JIS_2016__19_6_a6
Mikić, Jovan. A proof of a famous identity concerning the convolution of the central binomial coefficients. Journal of integer sequences, Tome 19 (2016) no. 6. http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a6/