On geometric progressions on hyperelliptic curves
Journal of integer sequences, Tome 19 (2016) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $C$ be a hyperelliptic curve over ${\mathbb Q}$ described by $y^2=a_0x^n+a_1x^{n-1}+\cdots+a_n, a_i\in{\mathbb Q}$. The points $P_{i}=(x_{i},y_{i})\in C(\mathbb{Q} ), i=1,2,\ldots,k$, are said to be in a geometric progression of length $k$ if the rational numbers $x_{i}, i=1,2,\ldots,k$, form a geometric progression sequence in ${\mathbb Q}$, i.e., $x_{i} = pt^{i}$ for some $p,t\in{\mathbb Q}$. In this paper we prove the existence of an infinite family of hyperelliptic curves on which there is a sequence of rational points in a geometric progression of length at least eight.
Classification : 14G05, 11B83
Keywords: geometric progression, hyperelliptic curve, rational point
@article{JIS_2016__19_6_a4,
     author = {Alaa, Mohamed and Sadek, Mohammad},
     title = {On geometric progressions on hyperelliptic curves},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a4/}
}
TY  - JOUR
AU  - Alaa, Mohamed
AU  - Sadek, Mohammad
TI  - On geometric progressions on hyperelliptic curves
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a4/
LA  - en
ID  - JIS_2016__19_6_a4
ER  - 
%0 Journal Article
%A Alaa, Mohamed
%A Sadek, Mohammad
%T On geometric progressions on hyperelliptic curves
%J Journal of integer sequences
%D 2016
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a4/
%G en
%F JIS_2016__19_6_a4
Alaa, Mohamed; Sadek, Mohammad. On geometric progressions on hyperelliptic curves. Journal of integer sequences, Tome 19 (2016) no. 6. http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a4/