Integer sequences connected to the Laplace continued fraction and Ramanujan's identity
Journal of integer sequences, Tome 19 (2016) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider integer sequences connected to the famous Laplace continued fraction for the function $R(t)=\int_t^\infty\varphi(x) \mathrm{d}x/\varphi(t)$, where $\varphi(t) = e^{-t^2/2}/\sqrt{2\pi}$ is the standard normal density. We compute the generating functions for these sequences and study their relation to the Hermite and Bessel polynomials. Using the master equation for the generating functions, we find a new proof of the Ramanujan identity.
Classification : 11Y05, 11Y55
Keywords: continued fraction, integer sequence, Ramanujan identity
@article{JIS_2016__19_6_a2,
     author = {Kreinin, Alexander},
     title = {Integer sequences connected to the {Laplace} continued fraction and {Ramanujan's} identity},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a2/}
}
TY  - JOUR
AU  - Kreinin, Alexander
TI  - Integer sequences connected to the Laplace continued fraction and Ramanujan's identity
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a2/
LA  - en
ID  - JIS_2016__19_6_a2
ER  - 
%0 Journal Article
%A Kreinin, Alexander
%T Integer sequences connected to the Laplace continued fraction and Ramanujan's identity
%J Journal of integer sequences
%D 2016
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a2/
%G en
%F JIS_2016__19_6_a2
Kreinin, Alexander. Integer sequences connected to the Laplace continued fraction and Ramanujan's identity. Journal of integer sequences, Tome 19 (2016) no. 6. http://geodesic.mathdoc.fr/item/JIS_2016__19_6_a2/