Arithmetic properties of partition $k$-tuples with odd parts distinct
Journal of integer sequences, Tome 19 (2016) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $pod_{-k}(n)$ denote the number of partition $k$-tuples of $n$ wherein odd parts are distinct (and even parts are unrestricted). We establish some interesting infinite families of congruences and internal congruences modulo 4, 16, and 5 for $pod_{-2}(n), pod_{-4}(n)$, and $pod_{-6}(n)$, respectively. We also find Ramanujan-type congruences modulo 5 for $pod_{-3}(n)$ and densities of $pod_{-2}(n), pod_{-3}(n), pod_{-4}(n)$, and $pod_{-6}(n)$ modulo 4, 5, 16, and 5, respectively.
Classification : 05A17, 11P83
Keywords: congruence, partition k-tuple, partition with odd parts distinct
@article{JIS_2016__19_5_a6,
     author = {Naika, M.S.Mahadeva and Gireesh, D.S.},
     title = {Arithmetic properties of partition $k$-tuples with odd parts distinct},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_5_a6/}
}
TY  - JOUR
AU  - Naika, M.S.Mahadeva
AU  - Gireesh, D.S.
TI  - Arithmetic properties of partition $k$-tuples with odd parts distinct
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_5_a6/
LA  - en
ID  - JIS_2016__19_5_a6
ER  - 
%0 Journal Article
%A Naika, M.S.Mahadeva
%A Gireesh, D.S.
%T Arithmetic properties of partition $k$-tuples with odd parts distinct
%J Journal of integer sequences
%D 2016
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_5_a6/
%G en
%F JIS_2016__19_5_a6
Naika, M.S.Mahadeva; Gireesh, D.S. Arithmetic properties of partition $k$-tuples with odd parts distinct. Journal of integer sequences, Tome 19 (2016) no. 5. http://geodesic.mathdoc.fr/item/JIS_2016__19_5_a6/