On binomial identities in arbitrary bases
Journal of integer sequences, Tome 19 (2016) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We first extend the digital binomial identity as given by Nguyen et al. to an identity in an arbitrary base $b$, by introducing the $b$-ary binomial coefficients. Then, we study the properties of these coefficients such as their orthogonality, their link with Lucas theorem and their extension to multinomial coefficients. Finally, we analyze the structure of the corresponding $b$-ary Pascal-like triangles.
Classification : 05C30, 05C78
Keywords: b-ary expansion, b-ary binomial coefficient, Lucas theorem
@article{JIS_2016__19_5_a5,
     author = {Jiu, Lin and Vignat, Christophe},
     title = {On binomial identities in arbitrary bases},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_5_a5/}
}
TY  - JOUR
AU  - Jiu, Lin
AU  - Vignat, Christophe
TI  - On binomial identities in arbitrary bases
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_5_a5/
LA  - en
ID  - JIS_2016__19_5_a5
ER  - 
%0 Journal Article
%A Jiu, Lin
%A Vignat, Christophe
%T On binomial identities in arbitrary bases
%J Journal of integer sequences
%D 2016
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_5_a5/
%G en
%F JIS_2016__19_5_a5
Jiu, Lin; Vignat, Christophe. On binomial identities in arbitrary bases. Journal of integer sequences, Tome 19 (2016) no. 5. http://geodesic.mathdoc.fr/item/JIS_2016__19_5_a5/