A note on a theorem of Guo, Mező, and Qi
Journal of integer sequences, Tome 19 (2016) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In a recent paper, Guo, Mező, and Qi proved an identity representing the Bernoulli polynomials at non-negative integer points $m$ in terms of the $m$-Stirling numbers of the second kind. In this note, using a new representation of the Bernoulli polynomials in the context of the Zeon algebra, we give an alternative proof of the aforementioned identity.
Keywords: zeon algebra, Berezin integration, Bernoulli number, m-Stirling number, generating function
@article{JIS_2016__19_4_a5,
     author = {Neto, Ant\^onio Francisco},
     title = {A note on a theorem of {Guo,} {Mez\H{o},} and {Qi}},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a5/}
}
TY  - JOUR
AU  - Neto, Antônio Francisco
TI  - A note on a theorem of Guo, Mező, and Qi
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a5/
LA  - en
ID  - JIS_2016__19_4_a5
ER  - 
%0 Journal Article
%A Neto, Antônio Francisco
%T A note on a theorem of Guo, Mező, and Qi
%J Journal of integer sequences
%D 2016
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a5/
%G en
%F JIS_2016__19_4_a5
Neto, Antônio Francisco. A note on a theorem of Guo, Mező, and Qi. Journal of integer sequences, Tome 19 (2016) no. 4. http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a5/