More upper bounds on taxicab and cabtaxi numbers
Journal of integer sequences, Tome 19 (2016) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For positive integers $a, b$ and integers $x, y$ such that $S = a^{3} + b^{3} = x^{3} + y^{3}$, we prove that $x+y \equiv a+b$ (mod 6); moreover, we give a parametric function $r_{i} \to (x(r_{i}),y(r_{i}))$ with $(x(r_{i}))^{3} + (y(r_{i}))^{3} = a^{3} + b^{3}$ for chosen parameters $r_{i}$, and we conjecture that most such $S$ are multiples of 18 if $S$ is large enough. Accordingly, floating sieving is introduced and upper bounds on the Cabtaxi numbers $Ca(n)$ with $43 \le n \le 57$, and the Taxicab numbers $Ta(n)$ with $n = 23$,24 are given. Among them, $Ta(n)$ with $n = 23,24,$ and $Ca(n)$ with $n = 43,44,$ are included in the On-Line Encyclopedia of Integer Sequences.
Classification : 11D25
Keywords: taxicab number, cabtaxi number, magnification, splitting factor, sieving, floating sieving
@article{JIS_2016__19_4_a1,
     author = {Su, Po-Chi},
     title = {More upper bounds on taxicab and cabtaxi numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a1/}
}
TY  - JOUR
AU  - Su, Po-Chi
TI  - More upper bounds on taxicab and cabtaxi numbers
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a1/
LA  - en
ID  - JIS_2016__19_4_a1
ER  - 
%0 Journal Article
%A Su, Po-Chi
%T More upper bounds on taxicab and cabtaxi numbers
%J Journal of integer sequences
%D 2016
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a1/
%G en
%F JIS_2016__19_4_a1
Su, Po-Chi. More upper bounds on taxicab and cabtaxi numbers. Journal of integer sequences, Tome 19 (2016) no. 4. http://geodesic.mathdoc.fr/item/JIS_2016__19_4_a1/