Geometric representations of the $n$-anacci constants and generalizations thereof
Journal of integer sequences, Tome 19 (2016) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce geometric representations of the sequence of the $n$-anacci constants and generalizations thereof that consist of the ratio limits generated by linear recurrences of an arbitrary order $n$ with equal real weights $p > 0$. We represent the $n$-anacci constants and their generalizations geometrically by means of the dilation factors of dilations transforming collections of compact convex sets with increasing dimensions $n$.
Classification : 11B37, 11B39
Keywords: weighted n-step Fibonacci sequence, generalized n-anacci constant, dilation and geometric representation of the (m, n)-anacci constant
@article{JIS_2016__19_3_a7,
     author = {Szczyrba, Igor and Szczyrba, Rafa{\l} and Burtscher, Martin},
     title = {Geometric representations of the $n$-anacci constants and generalizations thereof},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a7/}
}
TY  - JOUR
AU  - Szczyrba, Igor
AU  - Szczyrba, Rafał
AU  - Burtscher, Martin
TI  - Geometric representations of the $n$-anacci constants and generalizations thereof
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a7/
LA  - en
ID  - JIS_2016__19_3_a7
ER  - 
%0 Journal Article
%A Szczyrba, Igor
%A Szczyrba, Rafał
%A Burtscher, Martin
%T Geometric representations of the $n$-anacci constants and generalizations thereof
%J Journal of integer sequences
%D 2016
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a7/
%G en
%F JIS_2016__19_3_a7
Szczyrba, Igor; Szczyrba, Rafał; Burtscher, Martin. Geometric representations of the $n$-anacci constants and generalizations thereof. Journal of integer sequences, Tome 19 (2016) no. 3. http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a7/