New integer sequences arising from 3-period folding numbers
Journal of integer sequences, Tome 19 (2016) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Following Pólya's "guess and test" method, we seek to discover 3-period folding numbers analogous to the exhaustive set of 2-period folding numbers discovered by Hilton and Pedersen in 1981. Most of the rows and columns of the 2-period folding numbers are reported in the Online Encyclopedia of Integer Sequences (OEIS) with various other mathematical interpretations. We provide a table of 3-period folding numbers, but it is not exhaustive, as we demonstrate by showing other sets of 3-period folding numbers that are not in the table. We close the paper with an algorithm for finding more sets of 3-period folding numbers and a conjecture about how many such sets exist.
Classification : 11A99, 11B50, 51M15
Keywords: number theory, algorithm, paper-folding, sequence
@article{JIS_2016__19_3_a4,
     author = {Nguyen, Quynh and Pedersen, Jean and Vu, Hien T.},
     title = {New integer sequences arising from 3-period folding numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a4/}
}
TY  - JOUR
AU  - Nguyen, Quynh
AU  - Pedersen, Jean
AU  - Vu, Hien T.
TI  - New integer sequences arising from 3-period folding numbers
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a4/
LA  - en
ID  - JIS_2016__19_3_a4
ER  - 
%0 Journal Article
%A Nguyen, Quynh
%A Pedersen, Jean
%A Vu, Hien T.
%T New integer sequences arising from 3-period folding numbers
%J Journal of integer sequences
%D 2016
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a4/
%G en
%F JIS_2016__19_3_a4
Nguyen, Quynh; Pedersen, Jean; Vu, Hien T. New integer sequences arising from 3-period folding numbers. Journal of integer sequences, Tome 19 (2016) no. 3. http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a4/