Counting non-standard binary representations
Journal of integer sequences, Tome 19 (2016) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\mathcal{A}$ be a finite subset of $\mathbb{N} $ including 0 and let $f_\mathcal{A}(n)$ be the number of ways to write $n=\sum_{i=0}^{\infty}\epsilon_i2^i$, where $\epsilon_i\in\mathcal{A}$. We consider asymptotics of the summatory function $s_\mathcal{A}(r,m)$ of $f_\mathcal{A}(n)$ from $m2^{r}$ to $m2^{r+1}-1$, and show that $s_{\mathcal{A}}(r,m)\sim c(\mathcal{A},m)\left\vert\mathcal{A}\right\vert^r$ for some nonzero $c(\mathcal{A},m)\in\mathbb{Q} $.
Classification : 11A63
Keywords: digital representation, non-standard binary representation, summatory function
@article{JIS_2016__19_3_a0,
     author = {Anders, Katie},
     title = {Counting non-standard binary representations},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a0/}
}
TY  - JOUR
AU  - Anders, Katie
TI  - Counting non-standard binary representations
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a0/
LA  - en
ID  - JIS_2016__19_3_a0
ER  - 
%0 Journal Article
%A Anders, Katie
%T Counting non-standard binary representations
%J Journal of integer sequences
%D 2016
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a0/
%G en
%F JIS_2016__19_3_a0
Anders, Katie. Counting non-standard binary representations. Journal of integer sequences, Tome 19 (2016) no. 3. http://geodesic.mathdoc.fr/item/JIS_2016__19_3_a0/