On equivalence classes of generalized Fibonacci sequences
Journal of integer sequences, Tome 19 (2016) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a generalized Fibonacci sequence $( G_{n} )$ by $G_1, G_2 \in \mathbb{Z} $ and $G_{n} = G_{n-1} + G_{n-2}$ for any integer $n$. Let $p$ be a prime number and let $d(p)$ be the smallest positive integer $n$ which satisfies $p \mid F_n$. In this article, we introduce equivalence relations for the set of generalized Fibonacci sequences. One of the equivalence relations is defined as follows. We write $( G_n ) \sim^* (G'_n )$ if there exist integers $m$ and $n$ satisfying $G_{m+1}G'_n \equiv \modd{G'_{n+1}G_m} {p}$. We prove the following: if $p \equiv 2$ (mod 5), then the number of equivalence classes $\overline{ ( G_n )}$ satisfying $p \nmid G_n$ for any integer $n$ is $(p+1)/d(p)-1$. If $p \equiv \pm 1$ (mod 5), then the number is $(p-1)/d(p)+1$. Our results are refinements of a theorem given by Kôzaki and Nakahara in 1999. They proved that there exists a generalized Fibonacci sequence $( G_{n} )$such that $p \nmid G_n$ for any $n \in \mathbb{Z} $ if and only if one of the following three conditions holds: (1) $p = 5$; (2) $p \equiv \pm 1$ (mod 5); (3) $p \equiv 2$ (mod 5) and $d(p)$.
Classification : 11B39
Keywords: Fibonacci number, Lucas number, generalized Fibonacci sequence
@article{JIS_2016__19_2_a1,
     author = {Aoki, Miho and Sakai, Yuho},
     title = {On equivalence classes of generalized {Fibonacci} sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_2_a1/}
}
TY  - JOUR
AU  - Aoki, Miho
AU  - Sakai, Yuho
TI  - On equivalence classes of generalized Fibonacci sequences
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_2_a1/
LA  - en
ID  - JIS_2016__19_2_a1
ER  - 
%0 Journal Article
%A Aoki, Miho
%A Sakai, Yuho
%T On equivalence classes of generalized Fibonacci sequences
%J Journal of integer sequences
%D 2016
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_2_a1/
%G en
%F JIS_2016__19_2_a1
Aoki, Miho; Sakai, Yuho. On equivalence classes of generalized Fibonacci sequences. Journal of integer sequences, Tome 19 (2016) no. 2. http://geodesic.mathdoc.fr/item/JIS_2016__19_2_a1/