Generalized multiple counting Jacobsthal sequences of Fermat pseudoprimes
Journal of integer sequences, Tome 19 (2016) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This study involves definitions of regular and representational multiple-counting Jacobsthal sequences of Carmichael numbers. We introduce recurrence relations for multiple-counting Jacobsthal sequences and show their association with Fermat's little theorem. We also provide matrix representations and generalized Binet formulas for defined sequences. This leads to a better understanding of how certain composite numbers are distributed among consecutive powers.
Classification : 11Bxx, 11Y55, 11A15
Keywords: Carmichael number, Fermat's little theorem, binet formula, floor function, multiple-counting sequence, Fermat pseudoprime, Jacobsthal sequence
@article{JIS_2016__19_2_a0,
     author = {C{\i}lasun, M.H\"usrev},
     title = {Generalized multiple counting {Jacobsthal} sequences of {Fermat} pseudoprimes},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_2_a0/}
}
TY  - JOUR
AU  - Cılasun, M.Hüsrev
TI  - Generalized multiple counting Jacobsthal sequences of Fermat pseudoprimes
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_2_a0/
LA  - en
ID  - JIS_2016__19_2_a0
ER  - 
%0 Journal Article
%A Cılasun, M.Hüsrev
%T Generalized multiple counting Jacobsthal sequences of Fermat pseudoprimes
%J Journal of integer sequences
%D 2016
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_2_a0/
%G en
%F JIS_2016__19_2_a0
Cılasun, M.Hüsrev. Generalized multiple counting Jacobsthal sequences of Fermat pseudoprimes. Journal of integer sequences, Tome 19 (2016) no. 2. http://geodesic.mathdoc.fr/item/JIS_2016__19_2_a0/