Defining sums of products of power sums
Journal of integer sequences, Tome 19 (2016) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the sums of products of power sums of positive integers and their generalizations, using the multiple products of their exponential generating functions. The generalizations include a closed form expression for the sums of products of infinite series of the form $\sum_{n=0}^{\infty}\alpha^n n^k, 0\vert\alpha\vert1, k\in\mathbb{N} _0$ and the related Abel sum, which define, in a unified way, the sums of products of the power sums for all integers $k$ and connect them with the zeta function.
Classification : 11A25, 11B68, 05A10, 11B65
Keywords: power sum of integers, Bernoulli number, Bernoulli polynomial, Riemann zeta function, exponential generating function, Apostol-Bernoulli number
@article{JIS_2016__19_1_a7,
     author = {Singh, Jitender},
     title = {Defining sums of products of power sums},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2016__19_1_a7/}
}
TY  - JOUR
AU  - Singh, Jitender
TI  - Defining sums of products of power sums
JO  - Journal of integer sequences
PY  - 2016
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2016__19_1_a7/
LA  - en
ID  - JIS_2016__19_1_a7
ER  - 
%0 Journal Article
%A Singh, Jitender
%T Defining sums of products of power sums
%J Journal of integer sequences
%D 2016
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2016__19_1_a7/
%G en
%F JIS_2016__19_1_a7
Singh, Jitender. Defining sums of products of power sums. Journal of integer sequences, Tome 19 (2016) no. 1. http://geodesic.mathdoc.fr/item/JIS_2016__19_1_a7/