On $q$-Boson operators and $q$-analogues of the $r$-Whitney and $r$-Dowling numbers
Journal of integer sequences, Tome 18 (2015) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We define the $(q, r)$-Whitney numbers of the first and second kinds in terms of the $q$-Boson operators, and obtain several fundamental properties such as recurrence formulas, orthogonality and inverse relations, and other interesting identities. As a special case, we obtain a $q$-analogue of the $r$-Stirling numbers of the first and second kinds. Finally, we define the $(q, r)$-Dowling polynomials in terms of sums of $(q, r)$-Whitney numbers of the second kind, and obtain some of their properties.
Classification : 11B83, 11B73, 05A30
Keywords: Whitney number, Stirling number, boson operator, q-analogue
@article{JIS_2015__18_9_a6,
     author = {Mangontarum, Mahid M. and Katriel, Jacob},
     title = {On $q${-Boson} operators and $q$-analogues of the $r${-Whitney} and $r${-Dowling} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a6/}
}
TY  - JOUR
AU  - Mangontarum, Mahid M.
AU  - Katriel, Jacob
TI  - On $q$-Boson operators and $q$-analogues of the $r$-Whitney and $r$-Dowling numbers
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a6/
LA  - en
ID  - JIS_2015__18_9_a6
ER  - 
%0 Journal Article
%A Mangontarum, Mahid M.
%A Katriel, Jacob
%T On $q$-Boson operators and $q$-analogues of the $r$-Whitney and $r$-Dowling numbers
%J Journal of integer sequences
%D 2015
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a6/
%G en
%F JIS_2015__18_9_a6
Mangontarum, Mahid M.; Katriel, Jacob. On $q$-Boson operators and $q$-analogues of the $r$-Whitney and $r$-Dowling numbers. Journal of integer sequences, Tome 18 (2015) no. 9. http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a6/