Transcendence of digital expansions generated by a generalized Thue-Morse sequence
Journal of integer sequences, Tome 18 (2015) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, first we generalize the Thue-Morse sequence by means of a cyclic permutation and the $k$-adic expansion of non-negative integers, giving a sequence $(a(n))_{n=0}^{\infty }$, and consider the condition that $(a(n))_{n=0}^{\infty }$ is non-periodic. Next, we show that, if a generalized Thue-Morse sequence $(a(n))_{n=0}^{\infty }$ is not periodic, then no subsequence of the form $(a(N+nl))_{n=0}^{\infty }$ (where $N \ge 0$ and $l > 0$) is periodic. We apply the combinatorial transcendence criterion established by Adamczewski, Bugeaud, Luca, and Bugeaud to find that, for a non-periodic generalized Thue-Morse sequence taking its values in ${0,1,\dots ,\beta -1}$ (where $\beta $ is an integer greater than 1), the series $\Sigma _{n=0}^{\infty } a(N+nl) \beta ^{-n-1}$ gives a transcendental number. Furthermore, for non-periodic generalized Thue-Morse sequences taking positive integer values, the continued fraction $[0, a(N), a(N+l),\dots , a(N+nl), \dots ]$ gives a transcendental number.
Classification : 11A63, 11J99
Keywords: digit counting, stammering sequence
@article{JIS_2015__18_9_a1,
     author = {Miyanohara, Eiji},
     title = {Transcendence of digital expansions generated by a generalized {Thue-Morse} sequence},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a1/}
}
TY  - JOUR
AU  - Miyanohara, Eiji
TI  - Transcendence of digital expansions generated by a generalized Thue-Morse sequence
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a1/
LA  - en
ID  - JIS_2015__18_9_a1
ER  - 
%0 Journal Article
%A Miyanohara, Eiji
%T Transcendence of digital expansions generated by a generalized Thue-Morse sequence
%J Journal of integer sequences
%D 2015
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a1/
%G en
%F JIS_2015__18_9_a1
Miyanohara, Eiji. Transcendence of digital expansions generated by a generalized Thue-Morse sequence. Journal of integer sequences, Tome 18 (2015) no. 9. http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a1/