Periodic continued fractions and Kronecker symbols
Journal of integer sequences, Tome 18 (2015) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the Kronecker symbol ?$(s|t)$? for the sequence of the convergents $s/t$ of a purely periodic continued fraction expansion. Whereas the corresponding sequence of Jacobi symbols is always periodic, it turns out that the sequence of Kronecker symbols may be aperiodic. Our main result describes the period length in the periodic case in terms of the period length of the sequence of Jacobi symbols and gives a necessary and sufficient condition for the occurrence of the aperiodic case.
Classification : 11A15, 11A55
Keywords: Kronecker symbol, convergent, quadratic irrational, periodic continued fraction
@article{JIS_2015__18_9_a0,
     author = {Girstmair, Kurt},
     title = {Periodic continued fractions and {Kronecker} symbols},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a0/}
}
TY  - JOUR
AU  - Girstmair, Kurt
TI  - Periodic continued fractions and Kronecker symbols
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a0/
LA  - en
ID  - JIS_2015__18_9_a0
ER  - 
%0 Journal Article
%A Girstmair, Kurt
%T Periodic continued fractions and Kronecker symbols
%J Journal of integer sequences
%D 2015
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a0/
%G en
%F JIS_2015__18_9_a0
Girstmair, Kurt. Periodic continued fractions and Kronecker symbols. Journal of integer sequences, Tome 18 (2015) no. 9. http://geodesic.mathdoc.fr/item/JIS_2015__18_9_a0/