Polygonal, Sierpiński, and Riesel numbers
Journal of integer sequences, Tome 18 (2015) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of triangular numbers, hexagonal numbers, and pentagonal numbers. We also show that there are infinitely many Riesel numbers in the same sequences. Furthermore, we show that there are infinitely many $n$-gonal numbers that are simultaneously Sierpiński and Riesel.
Classification : 11A07, 11Y55
Keywords: sierpiński number, riesel number, triangular number, covering congruence
@article{JIS_2015__18_8_a1,
     author = {Baczkowski, Daniel and Eitner, Justin and Finch, Carrie E. and Suminski, Braedon and Kozek, Mark},
     title = {Polygonal, {Sierpi\'nski,} and {Riesel} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {8},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_8_a1/}
}
TY  - JOUR
AU  - Baczkowski, Daniel
AU  - Eitner, Justin
AU  - Finch, Carrie E.
AU  - Suminski, Braedon
AU  - Kozek, Mark
TI  - Polygonal, Sierpiński, and Riesel numbers
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_8_a1/
LA  - en
ID  - JIS_2015__18_8_a1
ER  - 
%0 Journal Article
%A Baczkowski, Daniel
%A Eitner, Justin
%A Finch, Carrie E.
%A Suminski, Braedon
%A Kozek, Mark
%T Polygonal, Sierpiński, and Riesel numbers
%J Journal of integer sequences
%D 2015
%V 18
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_8_a1/
%G en
%F JIS_2015__18_8_a1
Baczkowski, Daniel; Eitner, Justin; Finch, Carrie E.; Suminski, Braedon; Kozek, Mark. Polygonal, Sierpiński, and Riesel numbers. Journal of integer sequences, Tome 18 (2015) no. 8. http://geodesic.mathdoc.fr/item/JIS_2015__18_8_a1/