Counting the restricted Gaussian partitions of a finite vector space
Journal of integer sequences, Tome 18 (2015) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A subspace partition $\Pi $ of a finite vector space $V = V(n,q)$ of dimension $n$ over $GF(q)$ is a collection of subspaces of $V$ such that their union is $V$, and the intersection of any two subspaces in $\Pi $ is the zero vector. The multiset $T_{\Pi }$ of dimensions of subspaces in $\Pi $ is called the type of $\Pi , or,$ a Gaussian partition of $V$. Previously, we showed that subspace partitions of $V$ and their types are natural, combinatorial $q$-analogues of the set partitions of ${1,\dots ,n}$ and integer partitions of $n$ respectively. In this paper, we connect all four types of partitions through the concept of "basic" set, subspace, and Gaussian partitions, corresponding to the integer partitions of $n$. In particular, we combine Beutelspacher's classic construction of subspace partitions with some additional conditions to derive a special subset ? of Gaussian partitions of $V$. We then show that the cardinality of ? is a rational polynomial $R(q)$ in $q$, with $R(1) = p(n)$, where $p$ is the integer partition function.
Keywords: subspace partition, vector space partition, Gaussian partition, integer partition, q-analogue
@article{JIS_2015__18_7_a3,
     author = {Akman, Fusun and Sissokho, Papa A.},
     title = {Counting the restricted {Gaussian} partitions of a finite vector space},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a3/}
}
TY  - JOUR
AU  - Akman, Fusun
AU  - Sissokho, Papa A.
TI  - Counting the restricted Gaussian partitions of a finite vector space
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a3/
LA  - en
ID  - JIS_2015__18_7_a3
ER  - 
%0 Journal Article
%A Akman, Fusun
%A Sissokho, Papa A.
%T Counting the restricted Gaussian partitions of a finite vector space
%J Journal of integer sequences
%D 2015
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a3/
%G en
%F JIS_2015__18_7_a3
Akman, Fusun; Sissokho, Papa A. Counting the restricted Gaussian partitions of a finite vector space. Journal of integer sequences, Tome 18 (2015) no. 7. http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a3/