Primes in intersections of Beatty sequences
Journal of integer sequences, Tome 18 (2015) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this note we consider the question of whether there are infinitely many primes in the intersection of two or more Beatty sequences $\lfloor \xi _{j}n + \eta _{j}\rfloor , n \in $ N, $j = 1,\dots ,k$. We begin with a straightforward sufficient condition for a set of Beatty sequences to contain infinitely many primes in their intersection. We then consider two sequences when one $\xi _{j}$ is rational. However, the main result we establish concerns the intersection of two Beatty sequences with irrational $\xi _{j}$. We show that, subject to a natural "compatibility" condition, if the intersection contains more than one element, then it contains infinitely many primes. Finally, we supply a definitive answer when the compatibility condition fails.
Classification : 11B83, 11N13, 11J71
Keywords: Beatty sequence, prime number
@article{JIS_2015__18_7_a2,
     author = {Harman, Glyn},
     title = {Primes in intersections of {Beatty} sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a2/}
}
TY  - JOUR
AU  - Harman, Glyn
TI  - Primes in intersections of Beatty sequences
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a2/
LA  - en
ID  - JIS_2015__18_7_a2
ER  - 
%0 Journal Article
%A Harman, Glyn
%T Primes in intersections of Beatty sequences
%J Journal of integer sequences
%D 2015
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a2/
%G en
%F JIS_2015__18_7_a2
Harman, Glyn. Primes in intersections of Beatty sequences. Journal of integer sequences, Tome 18 (2015) no. 7. http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a2/