Equivalence classes of Motzkin paths modulo a pattern of length at most two
Journal of integer sequences, Tome 18 (2015) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For any pattern $\alpha $ of length at most two, we enumerate equivalence classes of Motzkin paths where two paths of the same length are equivalent whenever they coincide on all occurrences of the pattern $\alpha $.
Classification : 68R15
Keywords: Motzkin path, equivalence relation, statistics
@article{JIS_2015__18_7_a0,
     author = {Baril, Jean-Luc and Petrossian, Armen},
     title = {Equivalence classes of {Motzkin} paths modulo a pattern of length at most two},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a0/}
}
TY  - JOUR
AU  - Baril, Jean-Luc
AU  - Petrossian, Armen
TI  - Equivalence classes of Motzkin paths modulo a pattern of length at most two
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a0/
LA  - en
ID  - JIS_2015__18_7_a0
ER  - 
%0 Journal Article
%A Baril, Jean-Luc
%A Petrossian, Armen
%T Equivalence classes of Motzkin paths modulo a pattern of length at most two
%J Journal of integer sequences
%D 2015
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a0/
%G en
%F JIS_2015__18_7_a0
Baril, Jean-Luc; Petrossian, Armen. Equivalence classes of Motzkin paths modulo a pattern of length at most two. Journal of integer sequences, Tome 18 (2015) no. 7. http://geodesic.mathdoc.fr/item/JIS_2015__18_7_a0/