Powers of two modulo powers of three
Journal of integer sequences, Tome 18 (2015) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Since 2 is a primitive root of $3^{m}$ for each positive integer $m$, the set of points ${ (n, 2^{n}$ mod $3^{m}) : n \ge 0}$, viewed as a subset of $Z_{\ge 0} \times Z_{\ge 0}$ is bi-periodic, with minimal periods ϕ$(3^{m})$ (horizontally) and $3^{m}$ (vertically). We show that if one considers the classes of $n$ modulo 6, one obtains a finer structural classification. This result is presented within the context of the question of strong normality of Stoneham numbers.
Keywords: primitive root, strong normality, normality
@article{JIS_2015__18_6_a2,
     author = {Coons, Michael and Winning, Heath},
     title = {Powers of two modulo powers of three},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_6_a2/}
}
TY  - JOUR
AU  - Coons, Michael
AU  - Winning, Heath
TI  - Powers of two modulo powers of three
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_6_a2/
LA  - en
ID  - JIS_2015__18_6_a2
ER  - 
%0 Journal Article
%A Coons, Michael
%A Winning, Heath
%T Powers of two modulo powers of three
%J Journal of integer sequences
%D 2015
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_6_a2/
%G en
%F JIS_2015__18_6_a2
Coons, Michael; Winning, Heath. Powers of two modulo powers of three. Journal of integer sequences, Tome 18 (2015) no. 6. http://geodesic.mathdoc.fr/item/JIS_2015__18_6_a2/