Analytic representations of the $n$-anacci constants and generalizations thereof
Journal of integer sequences, Tome 18 (2015) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study generalizations of the sequence of the $n$-anacci constants that are constructed from the ratio limits generated by linear recurrences of an arbitrary order $n$ with equal integer weights $m$. We derive the analytic representation of the class $C^{\infty }$ of these ratio limits and prove that, for a fixed $m$, the ratio limits form a strictly increasing sequence converging to $m+1$. We also show that the generalized $n$-anacci constants form a totally ordered set.
Classification : 11B37, 11B39
Keywords: linear recurrence, n-step Fibonacci number, weighted n-generalized Fibonacci sequence, generalized n-anacci constant
@article{JIS_2015__18_4_a1,
     author = {Szczyrba, Igor and Szczyrba, Rafa{\l} and Burtscher, Martin},
     title = {Analytic representations of the $n$-anacci constants and generalizations thereof},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_4_a1/}
}
TY  - JOUR
AU  - Szczyrba, Igor
AU  - Szczyrba, Rafał
AU  - Burtscher, Martin
TI  - Analytic representations of the $n$-anacci constants and generalizations thereof
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_4_a1/
LA  - en
ID  - JIS_2015__18_4_a1
ER  - 
%0 Journal Article
%A Szczyrba, Igor
%A Szczyrba, Rafał
%A Burtscher, Martin
%T Analytic representations of the $n$-anacci constants and generalizations thereof
%J Journal of integer sequences
%D 2015
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_4_a1/
%G en
%F JIS_2015__18_4_a1
Szczyrba, Igor; Szczyrba, Rafał; Burtscher, Martin. Analytic representations of the $n$-anacci constants and generalizations thereof. Journal of integer sequences, Tome 18 (2015) no. 4. http://geodesic.mathdoc.fr/item/JIS_2015__18_4_a1/