Exact and asymptotic evaluation of the number of distinct primitive cuboids
Journal of integer sequences, Tome 18 (2015) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We express the number of distinct primitive cuboids with given odd diagonal in terms of the twisted Euler function with alternating Dirichlet character of period four, and two counting formulas for binary sums of squares. Based on the asymptotic behaviour of the sums of these formulas, we derive an approximation formula for the cumulative number of primitive cuboids.
Classification : 11D45, 11N37, 11A25, 11B34
Keywords: arithmetic function, twisted Euler function, Dirichlet L-function, Dirichlet beta function, Catalan's constant, Lehmer's totient sum, Pythagorean quadruple
@article{JIS_2015__18_2_a6,
     author = {H\"urlimann, Werner},
     title = {Exact and asymptotic evaluation of the number of distinct primitive cuboids},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a6/}
}
TY  - JOUR
AU  - Hürlimann, Werner
TI  - Exact and asymptotic evaluation of the number of distinct primitive cuboids
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a6/
LA  - en
ID  - JIS_2015__18_2_a6
ER  - 
%0 Journal Article
%A Hürlimann, Werner
%T Exact and asymptotic evaluation of the number of distinct primitive cuboids
%J Journal of integer sequences
%D 2015
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a6/
%G en
%F JIS_2015__18_2_a6
Hürlimann, Werner. Exact and asymptotic evaluation of the number of distinct primitive cuboids. Journal of integer sequences, Tome 18 (2015) no. 2. http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a6/