On the largest product of primes with bounded sum
Journal of integer sequences, Tome 18 (2015) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $h(n)$ denote the largest product of primes whose sum is $\le n$, and $g(n)$ denote the Landau function, which is the largest product of powers of primes whose sum is $\le n$. In this article, several properties of $h(n)$ are given and compared to similar properties of $g(n)$. Special attention is paid to the behavior of the largest prime factor of $h(n)$.
Classification : 11A25, 11N37, 11N05, 11-04
Keywords: distribution of primes, champion number, highly compostite number, Landau function
@article{JIS_2015__18_2_a4,
     author = {Del\'eglise, Marc and Nicolas, Jean-Louis},
     title = {On the largest product of primes with bounded sum},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a4/}
}
TY  - JOUR
AU  - Deléglise, Marc
AU  - Nicolas, Jean-Louis
TI  - On the largest product of primes with bounded sum
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a4/
LA  - en
ID  - JIS_2015__18_2_a4
ER  - 
%0 Journal Article
%A Deléglise, Marc
%A Nicolas, Jean-Louis
%T On the largest product of primes with bounded sum
%J Journal of integer sequences
%D 2015
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a4/
%G en
%F JIS_2015__18_2_a4
Deléglise, Marc; Nicolas, Jean-Louis. On the largest product of primes with bounded sum. Journal of integer sequences, Tome 18 (2015) no. 2. http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a4/