On arithmetic functions related to iterates of the Schemmel totient functions
Journal of integer sequences, Tome 18 (2015) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We begin by introducing an interesting class of functions, known as the Schemmel totient functions, that generalizes the Euler totient function. For each Schemmel totient function $L_{m}$, we define two new functions, denoted $R_{m}$ and $H_{m}$, that arise from iterating $L_{m}$. Roughly speaking, $R_{m}$ counts the number of iterations of $L_{m}$ needed to reach either 0 or 1, and $H_{m}$ takes the value (either 0 or 1) that the iteration trajectory eventually reaches. Our first major result is a proof that, for any positive integer $m$, the function $H_{m}$ is completely multiplicative. We then introduce an iterate summatory function, denoted $D_{m}$, and define the terms $D_{m}$-deficient, $D_{m}$-perfect, and $D_{m}$-abundant. We proceed to prove several results related to these definitions, culminating in a proof that, for all positive even integers $m$, there are infinitely many $D_{m}$-abundant numbers. Many open problems arise from the introduction of these functions and terms, and we mention a few of them, as well as some numerical results.
Classification : 11N64, 11B83
Keywords: schemmel totient function, iterated arithmetic function, summatory function, perfect totient number
@article{JIS_2015__18_2_a2,
     author = {Defant, Colin},
     title = {On arithmetic functions related to iterates of the {Schemmel} totient functions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a2/}
}
TY  - JOUR
AU  - Defant, Colin
TI  - On arithmetic functions related to iterates of the Schemmel totient functions
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a2/
LA  - en
ID  - JIS_2015__18_2_a2
ER  - 
%0 Journal Article
%A Defant, Colin
%T On arithmetic functions related to iterates of the Schemmel totient functions
%J Journal of integer sequences
%D 2015
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a2/
%G en
%F JIS_2015__18_2_a2
Defant, Colin. On arithmetic functions related to iterates of the Schemmel totient functions. Journal of integer sequences, Tome 18 (2015) no. 2. http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a2/