A prisoner problem variation
Journal of integer sequences, Tome 18 (2015) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Consider a fair $n$-sided die with faces numbered 1 to $n$. Several different methods are used to compute the probability that every face has come up at least once when face $n$ appears for the $k^{th}$ time. The results lead to a number of summation identities. The probabilities are related to several sequences in Sloane's On-Line Encyclopedia of Integer Sequences.
Classification : 11B99, 60C05
Keywords: occupancy problem, waiting time, inclusion-exclusion counting, Stirling number of the second kind, Markov chain, binomial identity, binomial sum, multinomial sum, binomial transformation
@article{JIS_2015__18_2_a1,
     author = {Metzger, Jerry and Richards, Thomas},
     title = {A prisoner problem variation},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a1/}
}
TY  - JOUR
AU  - Metzger, Jerry
AU  - Richards, Thomas
TI  - A prisoner problem variation
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a1/
LA  - en
ID  - JIS_2015__18_2_a1
ER  - 
%0 Journal Article
%A Metzger, Jerry
%A Richards, Thomas
%T A prisoner problem variation
%J Journal of integer sequences
%D 2015
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a1/
%G en
%F JIS_2015__18_2_a1
Metzger, Jerry; Richards, Thomas. A prisoner problem variation. Journal of integer sequences, Tome 18 (2015) no. 2. http://geodesic.mathdoc.fr/item/JIS_2015__18_2_a1/