Enumerating families of labeled graphs
Journal of integer sequences, Tome 18 (2015) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In 1966, Rosa introduced, among others, $\alpha $- and $\beta $-labelings as tools to solve the isomorphic decomposition problem of the complete graph. Ten years later, Sheppard calculated the number of $\alpha $- and $\beta $-labeled graphs with $n$ edges. In this paper we use an extended version of the adjacency matrix of a graph to determine the number of gracefully labeled graphs with $n$ edges; furthermore, we also calculate the number of them with $m$ vertices for every suitable value of $m$. In addition, we use this technique to determine the number of labeled graphs for other types of labelings as the harmonious, felicitous, and elegant.
Classification : 05C30, 05C78
Keywords: graceful graph, $\alpha $-graph, enumeration, graceful triangle
@article{JIS_2015__18_1_a7,
     author = {Barrientos, Christian and Minion, Sarah},
     title = {Enumerating families of labeled graphs},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a7/}
}
TY  - JOUR
AU  - Barrientos, Christian
AU  - Minion, Sarah
TI  - Enumerating families of labeled graphs
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a7/
LA  - en
ID  - JIS_2015__18_1_a7
ER  - 
%0 Journal Article
%A Barrientos, Christian
%A Minion, Sarah
%T Enumerating families of labeled graphs
%J Journal of integer sequences
%D 2015
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a7/
%G en
%F JIS_2015__18_1_a7
Barrientos, Christian; Minion, Sarah. Enumerating families of labeled graphs. Journal of integer sequences, Tome 18 (2015) no. 1. http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a7/