Linear recurrence sequences and their convolutions via Bell polynomials
Journal of integer sequences, Tome 18 (2015) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We recast homogeneous linear recurrence sequences with fixed coefficients in terms of partial Bell polynomials, and use their properties to obtain various combinatorial identities and multifold convolution formulas. Our approach relies on a basis of sequences that can be obtained as the INVERT transform of the coefficients of the given recurrence relation. For such a basis sequence with generating function $Y(t)$, and for any positive integer $r$, we give a formula for the convolved sequence generated by $Y(t)^{r}$ and prove that it satisfies an elegant recurrence relation.
Classification : 11B37, 11B83, 11B39
Keywords: linear recurrence sequence, Bell polynomial, power sum, convolved sequence
@article{JIS_2015__18_1_a4,
     author = {Birmajer, Daniel and Gil, Juan B. and Weiner, Michael D.},
     title = {Linear recurrence sequences and their convolutions via {Bell} polynomials},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a4/}
}
TY  - JOUR
AU  - Birmajer, Daniel
AU  - Gil, Juan B.
AU  - Weiner, Michael D.
TI  - Linear recurrence sequences and their convolutions via Bell polynomials
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a4/
LA  - en
ID  - JIS_2015__18_1_a4
ER  - 
%0 Journal Article
%A Birmajer, Daniel
%A Gil, Juan B.
%A Weiner, Michael D.
%T Linear recurrence sequences and their convolutions via Bell polynomials
%J Journal of integer sequences
%D 2015
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a4/
%G en
%F JIS_2015__18_1_a4
Birmajer, Daniel; Gil, Juan B.; Weiner, Michael D. Linear recurrence sequences and their convolutions via Bell polynomials. Journal of integer sequences, Tome 18 (2015) no. 1. http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a4/