Fibonacci $s$-Cullen and $s$-Woodall numbers
Journal of integer sequences, Tome 18 (2015) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The $m$-th Cullen number $Cm$ is a number of the form $m2^{m} + 1$ and the $m$-th Woodall number $Wm$ has the form $m2^{m} - 1$ In 2003, Luca and Stănică proved that the largest Fibonacci number in the Cullen sequence is $F_{4} = 3$ and that $F_{1} = F_{2} = 1$ are the largest Fibonacci numbers in the Woodall sequence. Very recently, the second author proved that, for any given $s > 1$, the equation $F_{n} = ms^{m} \pm 1$ has only finitely many solutions, and they are effectively computable. In this note, we shall provide the explicit form of the possible solutions.
Classification : 11B39
Keywords: Fibonacci number, cullen number
@article{JIS_2015__18_1_a1,
     author = {Chaves, Ana Paula and Marques, Diego},
     title = {Fibonacci $s${-Cullen} and $s${-Woodall} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a1/}
}
TY  - JOUR
AU  - Chaves, Ana Paula
AU  - Marques, Diego
TI  - Fibonacci $s$-Cullen and $s$-Woodall numbers
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a1/
LA  - en
ID  - JIS_2015__18_1_a1
ER  - 
%0 Journal Article
%A Chaves, Ana Paula
%A Marques, Diego
%T Fibonacci $s$-Cullen and $s$-Woodall numbers
%J Journal of integer sequences
%D 2015
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a1/
%G en
%F JIS_2015__18_1_a1
Chaves, Ana Paula; Marques, Diego. Fibonacci $s$-Cullen and $s$-Woodall numbers. Journal of integer sequences, Tome 18 (2015) no. 1. http://geodesic.mathdoc.fr/item/JIS_2015__18_1_a1/